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SUMMARY

Analytical expressions for the distribution coefficient of a chromatographed
compound, taking into account the non-ideality of a two-component mobile phase,
have been derived in terms of Snyder’s theory of liquid adsorption chromatography
and the theory of liquid adsorption formulated by Everett and Myers. Model calcula-
tions have been made by assuming regularity of the mixed mobile phase.

INTRODUCTION

The optimization of chromatographic separations is one of the most important
problems in chromatography. In the case of liquid adsorption chromatography (LC)
this problem involves the prediction of the optimal mobile-phase gradient for a given
chromatographed mixture!. Most methods of determining the optimal mobile-phase
gradient are based on the dependence of the capacity ratio on the composmon of the
mobile phase'~S.

The most advanced studies, concerning the prechctlon of the aapacnty ratio
in LC with a mixed mobile phase, have been made by Sayder’-5, Soczewiiski®'°,
Oscik!t-12, Jandera and Churdcek!>-'*, and Scott and Kucera's. Snyder’s_approach"rs,
one of the most popular treatments in LC theory, involves one- and two-componént
mobile phase. In this formulation, chromatographic systems with two-component
mobile phases have been discussed by assuming homogeneity of the adsorbent surface
and ideality of the mobile phase. The papers of Jandera and Churicek!>.'* develop
Snyder’s idea”-8; however, the approaches of Soczewiriski®'® and Scott and Kucera®®
lead to analyiical expressions for the capacity ratio which are analogous to those
obtained on the basis of Snyder’s treatment. Recently, Poppe and co-workers'® have
extended Snyder’s equations for LC with an ideal mobile phase to LC with a non-
ideal phase. Another approach to LC with a multicomponent ideal or regular mobile

* To whom correspondence should be addressed.
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phase has been proposed by Oscik!'. This treatment was examined by using experi-
mental thin-layer chromatographic (TLC) data’>. A comparison of Qscik’s treatment
with Snyder’s approach has recently been made by Jaroniec et al.l”.

In this paper the influence of nonideality of the mobile phase on the distribu-
tion coefficient is discussed in terms of Snyder’s treatment and the theory of liquid
adsorption of Everett and Myers. Model calculations of the distribution coefficient
have been performed for two-component mobile phases, because these phases are

usually employed in experiments.

GENERAL CONSIDERATIONS

Let us consider the distribution of a given compound S between the solvent
A (mobile phase) and the stationary phase. The distribution coefficient K(,,s is defined

by
Kias = ¥s/xs 8y
where x5 and ys are the mole fractions of the sample S in the mobile and stationary

phases, respactively. The distribution coefficient in eqn. 1 is equal to the distribution
coefficient Ka,s divided by the volume of adsorbed solvent per gram of adsorbent,

V, ie.
K(A)s = K(A)s./ Va
where
K(A)S == CZ_/CS and Va == V/’I]AW

Here, ¢s and cg are the concentrations of the sample S in the mobile (in mole/ml)
and adsorbed phase (in mole/g), respectively, ¥ is the total volume of unadsorbed
phase (in ml) in an adsorption system and W is the total weight of adsorbent (in g)
in the adsorption system. At very low sample concentrations

(4 a :
ng ns ng ng
Xg=——— AN Py~ Q)
Ry +Ns N, ng +ng  n§

and the distribution coefficient K(,,5 is equal to

4 L4 n ’
Kiays = kears - —n—‘:— = Kas 7a &)
: A
where k(,,s is the capacity ratio
e
> @

.
e == —3_
(A)S ns

ns and n, are the numbers of moles of the sample S and solvent A in the mobile phase,
respectively, ng and ng are the numbers of moles of S and A in the adsorbed phase
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and 7, is a parameter, to a first approximation, assumed to be characteristic of a
given adsorbent and independent of the nature of the solvent’. The thermodynaxmc
equilibrium constant )

v YsXa - S
Koh =254
SA YaXs . } ) . ) (5)

at very low sample concentrations, ie.,

Kia = ys/xs

is equal to the distribution coefficient K{,,s. Thus,

Kiays = K - ‘ - . 7 (6)

Let us now consider a twb—compdnent mobile bhase A-B. According to
Snyder’s approach’, the combined distribution coefficient K5, is given by:

K(AB)S = (I — ya)Kias + }’aKm)s )

2

For an ideal mobile phase, the mole fractlon yg may be m.lculated from the Langmmt—
type equation:

=TT %mn
XA —[— KéAxB

Using the relationship'® between the thermodynamic equilibrium constants K&, Ksa
and K33, ie.,

Ksa = Ksa/Ks | ®
we have p S, ,
Yo = xg/Kp _ xs/K) - ‘ (10)
BT (xalKD) + (xa/KD) T (xalK(,,e) + (xa/Kr)) :
Substitution of eqn. 10 into eqn. 7 gives A
1 1 1 1 -
; — + %= —)x N 3))
K(AB)S K(A)S (Km)s K(A)S) ? : , T

Eqn. 1i has been discussed previously'?, and may also be obtained directly from
the definition of the distribution coefficient K(, 5,5 = ys/xs. For this purpose we-
consider the adsorption of the sample S from a three-component ideal liquid mixture
A-B-S. Following Minka and Myers'8, we have _— .

8T GalKiny) + GalRig) + s (Xa/K(a)e) + (x8/Kead) ;( )
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Using eqn. 12 and the definition of the distribution coefficient K(4g), We obtain
eqn. 11,

INON-IDEAL TWO-COMPONENT MOBILE PHASE

In the case of a non-ideal mobile phase the thermodynamic equilibrium con-
stant KgY is expressed as

' Y 1 G
agda 'Y y

Ké’;= : A _ ¥BYXA | }’g/A (13)
aAaB YaXs VAYB

where g; and y; are the activity and activity coefficient of the i-th solvent in the mobiie
phase, respectively, and the superscript ¢ refers to the adsorbed phase. Following
Sircar and Myers??, we assume an ideal adsorbed phase and a non-ideal mobile phase.
Then, ’

R a9

YaXs 7s

where the activity coefficients y, and yg refer to the two-component liquid mixture
A-B. The mole fraction yg, calculated from eqn. 14, may be substituted into eqn. 7.
Now, we assume that the mobile phase is regular and the influence of the sample
S on the activities ¢, and yg can be neglected. Then, according to the theory of
regular solutions?®?,

yi—=explg(l —x)?] for i=A,B: g<2 (15)
and ’

A — exp[— g(1 — 2xg)] (16)

78

where g is defined as

_ Nz
9= RT

[tiag — 0.5(1usn + ups)] a7

Here N is Avogadro’s number, z is the number of nearest neighbours to a given
lattice site, u;; (i,j = A, B) is the interaction energy between a pair of molecules
i, j on adiacent lattice sites, R is the gas constant and T is the absolute temperature.
In the case of an ideal liquid mixture A-B, the interaction energies t,, and wgy are
identical, i.e.,

Upsa = Uap = Upp
and then parameter ¢ is equal to zero. Eqns. 14 and 16 give

Yo =t | (18)

Xp o+ aXg
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The constant « is defined as

th

. K:h K ) \
= Kh Yn — sa¥s __ Kslh exp[q(l ——AB)] ) (19)

YA K ss¥’A

For an ideal adsorbed phase and a non—ndeal mobile phase S—-A, the thermodynamic
constant K& is

FYsXa Ya
KW . 2 20
sa YaXs Vsay ( )

where y5(4) is the activity coeflicient of sample S in the solvent A. For infinitely low
concentrations of sample S, applying relationships x, ~ A~ 1 and y, =~ 1 (see
eqn. 15), we obtain

_ Kias

¥s
K& = - 21
A Xs¥Vsca) 7sca)
Similarly, for Kl we have
Ksp = K(B)s/ 7s(8) 22)
Substitution of eqns. 21 and 22 in eqn. 19 gives
. Kiars __ 5
€ = 72> explq(l — 2xp)] (23)
(B)S
where
# = Ysmy/Vscar (24)
However, combination of eqns. 7 and 18 gives:
a(1-2x ) . . ‘
. xe(Kiase P — Kias) + K, .
K(AB)S — B (A)S (A)S ) {A)S (23)

K’A S >
xB(z——‘, S eai-2x) 1) +1
(B)S

Eqn. 25 defines the dependence of K(,5,s on the mole fraction, xg. This equation has
been obtained by assuming ideality of the adsorbed phase, regularity of the mobile
phase, homogeneity of the adsorbent surface and applying Snyder’s definition of
Kiapys in eqn. 7.

In Figs. 1-4 the theoretical dependences of K(,g,s vS. Xg, calculated according

to eqn. 25 for # = 1, are presented. Figs. 1 and 2 show the functions K( ams(Xs) for
K(g,s = 3, 1.5 and 0.5 and assuming K(,,s = 5, 4 = 0 (ideal mobile phase) (Fig. 1)
and g =— 2 (Fig. 2). Figs. 3 and 4 present the functions K_,g,s for different values

of g the parameter which characterizes the interactions in the mobile phase A-B.
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The function K(,5,s(xp) decreases for all values of x5 € (0, 1), if K 5, > K(g,s. For
g # O this function has an inflection point, which is clearly observed if K(,,s and
K(s,s are little different (see Fig. 4). Thus, for a regular mobile phase, i.e., g # 0,
the dependence of the distribution coefficient K 5,5 on x3 is different from that ob-
tained for an ideal mobile phase, i.e., ¢ = O (see Figs. 3 and 4). For low concentra-
tions of xg, K, 5s (for g < 0) > K{,5,s (for ¢ = 0); however, after the inflection
point (at high values of xy) this inequality is reversed. Our conclusions, resulting
from model calculations, are in a good agreement with the theoretical and experi-
mental studies of Poppe and co-workers!®:22, which generalize Snyder’s theory to
non-ideal mobile phase. However, our treatment seems to be more general, because
we assume Snyder’s eqn. 7 and the theories of Everett®' and Minka and Myers!® to
describe the adsorption from liquid mixtures.

W)
]
s
x
xg =g
Fig. 1. Theoretical dependences of K{aps vs. xp calculated according to egn. 25 for K{as = 5, % =
1, ¢ = 0 and different values of K(gs (numters on the curves).
Fig. 2. Theoretical dependences of K{.g,s vs. xs caiculated according to eqn. 25 for K(as = 5, x =
1, ¢ =— 2 and different values of K(g,s (numkters on the curves).

Now, we consider the possibility of calculating K(,g,s from the definition (see
egn. 1):

K(’AB)S = ys/Xs (26)
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Kiamys

Kiap)s

| 1 1 | !
0.2 o4 [eX2) o8

Xg Xg
Fig. 3. Theoretical dependence of K{ag)s vs- xa calculated according to eqn. 25 for K{as = 3, K{g)s =
0.5, x = 1 and different values of ¢ (numbers on the curves).

Fig. 4. Theoretical dependences of K{\g)s vs. xp calculated according to 2qn. 25 for K(as = 5, K(gys =
3, » = 1 and different values of ¢ (numbers on the curves).

In the case of adsorpticn from a non-ideal three-component liquid mixture, eqn.
12 may be rewritten as

sYscAB)
Ve = : . . @7
ST (@A KR) + (as/KB) + Xsysiam

At very low sample concentrations, from eqns. 26 and 27 we have

i VscaBy Vscay
K. = 7 : ’ =
CAB)IS (@/K,,,9) = (=ag/ Kip)o)

where ygam # | is a function of x, and xg. The method of calculation of yg5(ag,
is described in ref. 18. Assuming that K(,,s > K/, we have

K('As)s = K;‘; Vscamy/ap 29)

This equation is very similar to that derived by Poppe and co-workers'®.
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TABLE I

THE PARAMETERS K5 AND g CALCULATED ACCORDING TO EQN. 31

Sample S Mobile phase A-B K& q
3-Aminopyridine Chloroform-benzene 294 —0.22
2-Amino-6-methylpyridine Chloroform-benzene 3.57 —0.24
2-Aminopyridine Butyl acetate-benzene 435 0.13
3-Aminopyridine Butyl acetate-benzene 4.00 0.15
6-Methylquinoline Benzene—cyclohexane 5.55 0.23
2,6-Dimethylquinoline Benzene—cyclohexane 5.88 0.18
6-Methylquinoline Chloroform—carbon tetrachloride 3.13 —0.037
Isoquinoline Chloroform—carbon tetrachloride 3.57 —0.022
APPLICATION

For the purpose of illustration, the experimental TLC data of Oscik and
Chojnacka® have been used to examine eqn. 25. First, these data have been recal-
culated by means of the relationship

Ry = log & ' (30)

and then they have been approximated by using the following linear form of eqn. 25

Glxg) = 2gxg + d 3D
where
G(xs) = In Kams — Kmys L] Xp
e TR M —x
A (A)S (AB)S B
Glxg)
1.9
©
-1.6—
®
°
=13+
_ D0
O
O 5
1 ! [ 1 |
o2 0.4 0.6 o.8
. e

Fig. 5. Linear dependences of G(x) plotted according to eqn. 31 for the adsorption systems: (@) 2-
aminopyridine (S)-butyl acetate (B)-benzene (A); (@) 2,6-dimethylquinoline (S)-benzene (B)-cyclo-
hexane (A); (O) 6-methylquinoline (S)-chloroform (B)—carbon tetrachloride (A). R
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and
d= —InK}’, —¢q

The parameters K§, and g are summarized in Table I. :

Fig. 5 shows the experimental dependences G(xg) for some adsorption systems.
It follows from Table i that K3, and g, calculated for different chromatographed
samples and the same mobile phase A-B, are practically independent of the sample;
thus they may be used to compare the different mobile phase used in LC.

CONCLUSIONS

The distribution coefficient K5 for a non-ideal two-component mobile phase
may be evaluated according to eqn. 28 or eqns. 7 and 14. In the case of a regular
mobile phase the distribution coefficient is given by eqn. 25, which may be easily
linearized (see eqn. 31). This linear form is very convenient for approximating the
experimental data. The model calculations of K(,5,s for a regular two-component
mobile phase show that the influence of the interaction parameter q on the shape
of the dependence K( g, ¥s. Xz may be significant, if Snyder’s definition for K(,g)s,
eqn. 7, is used.
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